begin{split} (1+x)^{alpha}=&sum_{n=0}^{infty}frac{alpha(alpha-1)(alpha-2)cdots(alpha-n+1)}{n!}x^n\ =&1+alpha x+frac{alpha(alpha-1)}{2!}x^2+cdots+frac{alpha(alpha-1)(alpha-2)cdots(alpha-n+1)}{n!}x^n+cdots.~~~~~~~(1) end{split} \
證明:
- 首先確定右端冪級數的收斂半徑R.
- 由於
rho=lim_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|=lim_{nrightarrowinfty}frac{|alpha-n|}{n+1}=1, \
所以這個冪級數的收斂半徑為R=frac{1}{rho}=1.
- 用S_{alpha}(x)表示右端冪級數的和函數
S_{alpha}(x)=sum_{n=0}^{infty}frac{alpha(alpha-1)(alpha-2)cdots(alpha-n+1)}{n!}x^n,~-1<x<1.\
- 可知S_{alpha}(0)=1.
- 逐項求導,得
S'_{alpha}(x)=sum_{n=1}^{infty}frac{alpha(alpha-1)(alpha-2)cdots(alpha-n+1)}{(n-1)!}x^{n-1}=alpha S_{alpha-1}(x),~-1<x<1.\
- 因此有
(1+x)S'_{alpha}(x)=alpha(1+x)S_{alpha-1}(x),~-1<x<1.\
- 而
begin{split} (1+x)S_{alpha-1}(x)=&(1+x)sum_{n=0}^{infty}frac{(alpha-1)(alpha-2)cdots(alpha-n)}{n!}x^n\ =&sum_{n=0}^{infty}frac{(alpha-1)(alpha-2)cdots(alpha-n)}{n!}x^n+sum_{n=0}^{infty}frac{(alpha-1)(alpha-2)cdots(alpha-n)}{n!}x^{n+1}\ =&1+sum_{n=1}^{infty}[frac{(alpha-1)(alpha-2)cdots(alpha-n)}{n!}+frac{(alpha-1)(alpha-2)cdots(alpha-n+1)}{(n-1)!}]x^n\ =&1+sum_{n=1}^{infty}frac{(alpha-1)(alpha-2)cdots(alpha-n+1)}{(n-1)!}[frac{alpha-n}{n}+1]x^n\ =&sum_{n=0}^{infty}frac{alpha(alpha-1)(alpha-2)cdots(alpha-n+1)}{n!}x^n=S_{alpha}(x),~-1<x<1. end{split}
- 因此
(1+x)S'_{alpha}(x)=alpha S_{alpha}(x), \
也即
S'_{alpha}(x)=frac{alpha}{1+x} S_{alpha}(x),~-1<x<1.\
- 解常微分方程(見林偉初高數下冊教材p.120),得
S_{alpha}=Ce^{int_0^xfrac{alpha}{1+t}dt}=Ce^{alphaln(1+x)}=C(1+x)^{alpha},-1<x<1.\
- 由於S_{alpha}(0)=1,代入上式求得C=1,所以
S_{alpha}(x)=(1+x)^{alpha},-1<x<1\
命題得證.
註記:
- 等式(1)叫做牛頓二項公式,右端的冪級數叫做牛頓二項級數.
- 當alpha為正整數時,就是通常大傢高中知道的牛頓二項(式展開)公式,比如alpha=m,此時
(1+x)^m=sum_{n=0}^{m}C_m^nx^n, \
其中
C_m^n=frac{m!}{n!(m-n)!}=frac{m(m-1)cdots(m-n+1)}{n!},0leq nleq m, \ C_m^n=0,ngeq m+1. \
- 在端點x=pm1時等式是否成立,比較復雜,依賴於alpha的具體取值.
-
扫码下载安卓APP
-
微信扫一扫关注我们微信扫一扫打开小程序手Q扫一扫打开小程序
-
返回顶部